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Abstract: Anterior segment diseases are among the leading causes of irreversible blindness.
However, a method capable of recognizing all important anterior segment structures for clinical
diagnosis is lacking. By sharing the knowledge learned from each task, we proposed a fully
automated multitask deep learning method that allows for simultaneous segmentation and
quantification of all major anterior segment structures, including the iris, lens, cornea, as well
as implantable collamer lens (ICL) and intraocular lens (IOL), and meanwhile for landmark
detection of scleral spur and iris root in anterior segment OCT (AS-OCT) images. In addition,
we proposed a refraction correction method to correct for the true geometry of the anterior
segment distorted by light refraction during OCT imaging. 1251 AS-OCT images from 180
patients were collected and were used to train and test the model. Experiments demonstrated
that our proposed network was superior to state-of-the-art segmentation and landmark detection
methods, and close agreement was achieved between manually and automatically computed
clinical parameters associated with anterior chamber, pupil, iris, ICL, and IOL. Finally, as an
example, we demonstrated how our proposed method can be applied to facilitate the clinical
evaluation of cataract surgery.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Anterior segment is the front-most eye region as shown in Fig. 1(a1) and is associated with many
severe ophthalmic diseases such as cataract, glaucoma, high myopia, etc. Cataract is the leading
cause of blindness globally [1]. Primary angle-closure glaucoma (PACG) is another major cause
of blindness [2]. High myopia can induce complications such as retinal detachment and macular
hole [3] and has gained significant attention in recent years due to its increasing prevalence,
especially in Asia [4]. Anterior segment structures are routinely inspected in the clinic for
diagnosing these diseases, as well as for relevant surgery planning and post-surgery assessment.
Scleral spur (SS) and iris root (IR) are two significant landmarks of the anterior chamber. By
combining their location with the boundary information of the cornea and iris, comprehensive
clinical parameters can be computed for analyzing the anterior chamber angle (ACA), which
is a significant marker for glaucoma [5]. For vision-correction surgeries, an intraocular lens
(IOL) is routinely implanted to replace the cloudy natural lens for treating cataracts [1]. For
patients with high myopia, an implantable collamer lens (ICL) is typically inserted into the ciliary
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sulcus to restore refractive function [6]. In both cases, comparisons of pre- and post-surgical
anterior segment structures are required to evaluate treatment outcomes [7], [8] and to predict the
risk of potential complications such as abnormal IOL tilt/decentration, abnormal ICL vault, and
increased intraocular pressure after ICL implantation [9]. Therefore, accurate measurement of
anterior segment morphological parameters is essential for the clinical diagnosis and management
of ophthalmic diseases and surgery evaluation.

Fig. 1. AS-OCT imaging process and the main structures of the anterior segment: (a1)
Illustration of the anterior segment in the eye. (a2) AS-OCT radial scanning pattern in
Heidelberg ANTERION OCT system. (a3) An example of a cross-sectional AS-OCT image
corresponding to one scan line in (a2). (b1-d1) Main anterior segment structures and (b2-d2)
their corresponding segmentation masks: iris (purple), lens (green), cornea (yellow), IOL
(blue) and ICL (red). (e1-e2) ACA and the two landmarks SS (green dot) and IR (red dot).

Anterior segment optical coherence tomography (AS-OCT) is a non-contact and non-invasive
three-dimensional imaging technology that allows for depth-resolved assessment of anterior
segment with micrometer scale resolution [10]. In particular, AS-OCT based on swept source
OCT (SS-OCT) technology at the wavelength of 1300nm (e.g. Heidelberg ANTERION) can
achieve a deep penetration depth [11] and high imaging speed with fewer motion artifacts.
Commercial AS-OCT systems perform either raster scanning [12] or radial scanning (Fig. 1(a2)),
where each scan line corresponds to a 2D cross-sectional image (Fig. 1(a3)). As shown in
Fig. 1(b1), the cornea, iris, and lens are the three main natural anterior segment structures that can
be clearly delineated in an AS-OCT image. Figure 1(c1) and (d1) show IOL and ICL respectively,
which are inserted during surgical procedures. Moreover, AS-OCT is able to resolve the details
of ACA (Fig. 1(e1)), where the two significant landmarks SS and IR (Fig. 1(e2)) can be located.
However, due to the limitations of AS-OCT, SS is only detectable in about 30% of AS-OCT
images [13].

Although AS-OCT is an excellent imaging technique, quantitative analysis of AS-OCT images
demands extensive experience and manual labor. With the rapid development of artificial
intelligence, several methods for analyzing AS-OCT images have been proposed in recent years
[14–30]. The first class of methods relies on high-level features extracted by sophisticated
deep neural networks to directly make a diagnosis for certain types of diseases. For example,
Hao et al. [16] combined 2D AS-OCT images and 3D reconstruction as the input to learn
features for glaucoma classification. Chase et al. [17] employed VGG19 to classify dry eye
disease. Kamiya et al. [18] used ResNet-18 to detect keratoconus. Although these methods are
proficient at facilitating the diagnosis of a particular type of disease, they lack the key function
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to generate quantitative measurements of anterior segment for other clinical scenarios such as
surgery planning and assessment.

Another class of methods focuses on segmenting critical structures of anterior segment, which
can be subsequently quantified to derive clinical metrics for various disease diagnoses and surgery
evaluation. Williams et al. [19] used a graph cut method to segment the anterior and posterior
corneal surfaces. After segmenting the cornea and iris boundaries using a thresholding method,
Tian et al. [20] detected Schwalbe’s line to locate ACA and then computed three associated
clinical parameters: angle opening distance (AOD), angle recess area (ARA), and trabecular-iris
space area (TISA). Later, Ni et al. [21] derived two more clinical metrics of ACA, the area of ACA
centered at Schwalbe’s line and the iris curvature. Fu et al. [22] adopted label transfer and Otsu’s
thresholding for segmentation and computed AOD, iris curvature (I-Curve), anterior chamber
depth (ACD) and etc. for glaucoma classification. Shang et al. [23] applied a curvilinear structure
enhancement method to segment the iris. Hao et al. [15] developed a U-Net based network
for iris segmentation from which a 3D iris anterior surface was reconstructed for glaucoma
classification. For research on lens analysis, [24] and [25] firstly made a coarse segmentation and
then used a shape template and a curve fitting method to refine the masks. Zhang et al. [26]
combined multi-scale input to segment the lens. For IOL analysis, Schwarzenbacher et al. [27]
applied an encoder-decoder network with residual blocks to segment IOL.

In addition to the segmentation of anterior segment structures, automated detection of SS
and IR is also clinically significant, especially for analyzing ACA. A semi-automatic software
requiring users to input the location of SS was designed by Console et al. [32] for calculating
ACA related parameters. Recently, fully automatic SS detection methods have been proposed. In
the Angle closure Glaucoma Evaluation Challenge (AGE) [28], the most widely used approach
was a coarse-to-fine strategy [29], where the first network detected the ACA region and then
followed by the second network to locate SS. Multi-scale input of ACA [30] was also applied to
learn semantic information at different scales. By splitting an AS-OCT image along the central
scanning axis into left and right sub-images, Yang et al. [31] focused on detecting the SS and
IR and then computed clinical parameters of ACA. In addition to directly quantifying clinical
parameters, SS was also used to locate ACA which was then taken as the input into a CNN for
glaucoma classification [14].

Existing methods [15,20,22–27] mainly focused on one or two structures with the application
limited to 1-2 specific diseases. However, since the structural information of the iris, lens, cornea,
SS, IR, IOL, and ICL nearly defines the complete anterior segment, an automatic method capable
of performing all these tasks simultaneously can in theory generate more accurate results by
exploiting the inherent association and correlation between these anterior structures and key
points. However, no such methods have been reported for AS-OCT image analysis. Several
multitask methods have been proposed for other domains [33–35]. For example, in [34], Duan et
al. extracted fine-to-coarse 2.5D features and incorporated shape priors into the segmentation of
multiple structures and landmarks in cardiac MRI images. Tan et al. [35] applied U-Net with
multiple prediction heads to segment branches and detect bifurcation landmarks of the airway
and aorta in CT images. However, there is no evidence that these methods can be directly applied
to AS-OCT.

Quantitative diagnosis relies on accurate measurement of anterior segment structures. However,
AS-OCT suffers from refraction distortion that can change each structure’s natural shape and
location [11], as shown in Fig. 2. Westphal et al. [36] designed a method based on Fermat’s
principle to perform refraction correction. Tian et al. [20] used Snell’s law to correct the
refraction based on automatically segmented anterior corneal surface. However, there are
limitations. Some existing refraction correction methods, such as [36] lacked full automation,
requiring manual input to identify the cornea. Some methods such as [20] did not consider
the refraction at the interface between the posterior surface of the cornea and aqueous humor.
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In the present study, the AS-OCT images were acquired by a Heidelberg ANTERION system
(Heidelberg Engineering Ltd, Heidelberg, Germany). Two acquisition modes of this system
are shown in Fig. 2. While the Metrics mode (Fig. 2(a)) acquires 6 radial refraction corrected
cross-sectional images, the 30 degree interval between two consecutive radial scans skips many
details, severely limiting the system’s capability to resolve the complete 3D structures of interest,
and the details of the correction method have not been disclosed. In contrast, the Imaging mode
(Fig. 2(b)) can scan more densely but the refraction is left uncorrected. It is therefore desirable to
develop a new refraction correction method that can be directly applied to the densely sampled
but uncorrected AS-OCT images acquired by commercial OCT systems to allow for a more
accurate 3D measurement of the relevant structures.

Fig. 2. Metrics mode (refraction corrected) and Imaging mode (refraction uncorrected) of
Heidelberg ANTERION OCT imaging system: (a1-a2) The scan pattern of Metrics mode
and the corresponding B-scan cross-sectional image along the scan line. (b1-b2) The scan
pattern of Imaging mode and the corresponding cross-sectional image along the scan line.

In this study, we aimed to accurately identify and quantify all the necessary structures of
anterior segment and IOL/ICL to enable a comprehensive analysis of anterior segment for
various clinical applications. Our contributions are summarized as follows: (1) To the best of
our knowledge, this is the first report for simultaneous segmentation and landmark detection
of ASOCT images. (2) We proposed a model that can recognize all significant structures of
the anterior segment for computing nearly all possible clinical parameters for different clinical
scenarios. (3) We further proposed a refraction correction method that can automatically resolve
the true geometry of each structure, and can serve as an extension of commercial AS-OCT
systems to allow for more accurate measurements.

2. Methods

2.1. Multitask network for simultaneous segmentation and landmark detection

State-of-the-art (SOTA) medical image segmentation networks, such as U-Net [37] and TransUNet
[38], typically implement an encoder path to extract multilevel features and a decoder path
to upsample and fuse the high resolution input features to generate the segmentation masks.
Anatomically, SS is a distinguished inner extension of the sclera located on the posterior corneal
surface and IR is the apex of the angle recess between the posterior corneal surface and the
anterior iris surface (Fig. 1(e2)). Thus, both the segmentation (i.e. for iris, lens, etc.) and
detection tasks (i.e. for SS and IR) depend on the knowledge of the overall structure of the
anterior segment and it is desirable to share the same feature extractor between the two tasks. In
particular, the spatial information of different structures generated by the segmentation branch
can help the detection branch quickly focus on the most likely regions (e.g., ACA) containing the
target landmarks, similar to the attention mechanism [39]. Meanwhile, the information learned by
the detection branch may provide the segmentation branch with more refined details to improve
the segmented boundaries. Therefore, we use a feature exchange method to share knowledge in
the decoding process to achieve simultaneous segmentation of the main structures in the anterior
segment and landmark detection of SS and IR.
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Figure 3 illustrates the workflow of our proposed method. First, AS-OCT images are fed into a
multitask network to generate segmentation masks and landmark locations. Second, refraction
correction is performed to resolve the true geometry of the anterior segment, and 3D interpolation
is used to recover the missing boundary points between the discretely acquired cross-sectional
images for more accurate quantitative measurement. Finally, comprehensive clinical parameters
are computed from segmentation and landmark detection results.

Fig. 3. Overall workflow of the proposed AS-OCT image analysis method.

As shown in Fig. 4, following the design of U-Net [37], the proposed network consists of
three main components: a feature encoder, a feature decoder, and a feature exchange module. In
the encoder, five levels of Conv2d Blocks are stacked to extract high-level features, where each
Conv2d Block repeats the “convolution-batch normalization-ReLU” structure twice followed by
max pooling. The decoder contains one branch for segmentation of anterior segment structures
and another branch for landmark detection of SS and IR, respectively. At each level of the decoder,
high-level features are first upsampled and then used as the attention gating signal [39] on skip
connections. The attention module suppresses activations in irrelevant regions and focuses the
network on more salient features. The feature exchange module repeats the “convolution-batch
normalization-ReLU” module twice to exchange features between the segmentation and the
detection branch, and the upsampled features are again input to the feature exchange operation.
The features from the last level in the encoder are 2× upsampled and then fed into the first level
of both decoder branches, where feature exchange is not applied due to the lack of task-specific
learned features. The upsampled features, the features from the attention block and the exchanged
features are combined using a Conv2d Block. At the final layer, a 1×1 convolution is used to
generate full resolution results.

Formally, we denote the input training dataset as D = {(Xi, Mi, Hi) , i = 1, 2, . . . , N}, where N
is the number of images in the training dataset, Xi represents the input image, Mi stands for the
ground-truth segmentation mask and Hi is the ground-truth heatmap for landmark detection. For
segmentation, we use a combined Dice loss and multiclass cross-entropy loss:

LDice = 1 −
1
C

c∑︂
j

2
∑︁K

k Mip(j, k) · Mi(j, k)∑︁K
k Mip(j, k) +

∑︁K
k Mi(j, k)

. (1)
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Fig. 4. Proposed multitask network for simultaneous segmentation and landmark detection
for AS-OCT images (BN: batch normalization; ReLU: rectified linear unit).

LCE = −
1
K

C∑︂
j

K∑︂
k

Mi(j, k) log
(︁
Mip(j, k)

)︁
. (2)

LSeg = LDice + LCE. (3)

Where C is the number of classes, K is the pixel number, Mip ∈ [0, 1] and Mi ∈ {0, 1} are
the predicted segmentation mask and ground-truth mask respectively for input image Xi. For
landmark detection, inspired by [29], we use a combined heatmap registration loss [29] and MSE
loss:

LHR = 1 −
1
L

L∑︂
j

2
∑︁K

k Hip(j, k) · Hi(j, k)∑︁K
k Hip(j, k) +

∑︁K
k Hi(j, k)

. (4)

LMSE =
1
K

L∑︂
j

K∑︂
k

(︁
Hip(j, k) − Hi(j, k)

)︁2 . (5)

LL = LHR + LMSE. (6)

Where L is the number of landmarks, K is the pixel number, Hip ∈ [0, 1] and Hi ∈ {0, 1} are the
predicted heatmap and ground-truth heatmap respectively for input image Xi. The overall loss
function of our proposed method is:

L = LSeg + LL. (7)

2.2. Refraction correction

During AS-OCT imaging, light refraction occurs at the interface between any two optical media
with different refractive indices and can cause significant image distortion. Since air and cornea
have different refractive indices, incident light (indicated by the green line in Fig. 5(a)) changes its
original direction to propagate within the cornea (yellow line in Fig. 5(a)). Similarly, refraction
occurs again at the interface between cornea and aqueous humor (blue line in Fig. 5(a)). However,
conventional OCT image processing assumes that light travels in the same direction in cornea
and aqueous humor as the initial incident light, as shown in Fig. 5(b). Therefore, the shapes
of anterior segment structures are distorted in the raw AS-OCT display, which could lead to
significant errors in subsequent quantitative measurement.
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Fig. 5. (a) Real optical path on a refraction corrected AS-OCT image. (b) The corresponding
erroneous optical path on an AS-OCT image without refraction correction. (c) Inlet: The
real position of A and its uncorrected position Â.

To correct such distortions, knowledge of the anterior and posterior corneal surface boundary
is a prerequisite to compute the incidence and refraction angle of each point on the surface
for refraction correction. The corneal surface boundary information can be obtained from the
segmentation results of the proposed multitask network. Based on the anterior corneal surface
which is not distorted by refraction, we first correct the posterior corneal surface using Snell’s
law (8). Specifically, for any scanning spot shown in Fig. 5(b), and taking point Â in Fig. 5(c) as
an example, we recover the actual direction of light in the cornea (yellow dashed line in Fig. 5(c))
using Snell’s law (8) and then compute the correct position to recover point A using the definition
of optical pathlength (9):

n1 sin θ1 = n2 sin θ2. (8)
d
L
=

1
n

. (9)

where θ1 and θ2 are the incident and refraction angle respectively, n1 and n2 are the refractive
indices of the medium where the incident and refracted light propagates, respectively, d is the
physical distance, and L is the corresponding optical pathlength. The refractive indices used in
this study for refraction correction are 1.376 for cornea and 1.336 for aqueous humor.

2.3. Quantitative measurement of clinical parameters

Based on the segmentation results of our proposed network and refraction correction, a com-
prehensive list of clinical parameters can be automatically computed. Here, we compared our
method with other methods in terms of the capability of automatically computing different metrics
of anterior segment, including the metrics associated with iris, lens, cornea, ACA, anterior
chamber (AC), IOL and ICL. As shown in Table 1, our method can perform more comprehensive
measurements including the lens, IOL and ICL as compared with other methods. The primary
clinical parameters are listed as follows:

Table 1. Comparison of quantitative evaluation between different methods.

Methods Iris Lens Cornea ACA AC IOL ICL

Tian et al. [20] ✓ ✓

Ni et al. [21] ✓ ✓

Fu et al. [22] ✓ ✓ ✓

Shang et al. [23] ✓

Yang et al. [31] ✓

Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓
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(1) I-Curve: perpendicular distance between the line connecting the most central to the most
peripheral points of the iris pigment epithelium, to the posterior iris surface at the point of
greatest convexity (Fig. 6(a)).

Fig. 6. Illustration of quantification of the main clinical parameters derived in this study.

(2) ACD: distance along the central scanning axis between the anterior corneal surface and the
anterior lens surface (Fig. 6(a)). ACDC−ICL: distance between the anterior corneal surface and
the anterior ICL surface (Fig. 6(d)). VaultICL−L: distance between the posterior ICL surface and
the anterior lens surface (Fig. 6(d)). ACDC−IOL: distance between the anterior corneal surface
and the anterior IOL surface (Fig. 6(e)).

(3) Anterior chamber width (ACW): distance between two SS points (Fig. 6(a)).
(4) Anterior chamber volume (ACV): volume of the anterior chamber. ACVC−ICL: volume of

the region bounded by the cornea, iris and ICL. ACVICL−L: chamber volume between ICL and
lens. ACVIOL: volume of the region bounded by the cornea, iris and IOL.

(5) Tilt: angle between the lens axis and the scanning axis (Fig. 6(c)). TiltIOL: angle between
IOL axis and the scanning axis (Fig. 6(e)).

(6) Decentration: distance between the intersection of lens axis and lens equatorial plane and
the intersection of scanning axis and lens equatorial plane (Fig. 6(c)). DecentrationIOL: distance
between two intersections of the two axis defined above and the IOL equatorial plane (Fig. 6(e)).

(7) AODL: perpendicular distance from the posterior corneal surface at a point which is at a
distance of L µm to SS, to the anterior iris surface (Fig. 6(b)).

(8) TISAL: area bounded by AODL, a line from SS perpendicular to the inner scleral wall to
the anterior iris surface, the posterior corneal surface and the anterior iris surface (the area filled
with blue lines in Fig. 6(b)).

(9) Smooth index: ratio of the length of a straight line from the most peripheral to the most
central points of the anterior iris surface to the actual length of this surface [40].

(10) Iris thickness: The shortest distance between a point on the anterior iris surface and points
on the posterior iris pigment epithelium surface.

(11) Pupil diameter: The diameter of the pupil.
(12) Pupil area: The area of the pupil.
(13) Anterior tangential curvature map: tangential curvature of the anterior corneal surface

(Fig. 6(f)).
(14) Pachymetry: thickness of the cornea (Fig. 6(g)).

3. Experimental methods

3.1. Dataset and image annotation

The AS-OCT dataset used in the study was collected by a Heidelberg ANTERION system at
the Department of Cataract, Shanxi Eye Hospital, Taiyuan, China, between November 2020 and
February 2022. 1251 cross-sectional AS-OCT images from 180 patients with ophthalmic diseases



Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 3976

including glaucoma, myopia, cataract, and the combination of these diseases were collected in
this study, where images with severe motion artifacts had been excluded (n=2). Among these
patients, only a fraction of them had received IOL (8%) and ICL (5%) implantation surgery,
resulting in 167 images with IOL from 14 patients and 120 images with ICL from 9 patients. All
images were randomly split on patient level for training (60%, 605 refraction corrected images
from Metrics Mode and 128 refraction uncorrected images from Imaging Mode), validation
(20%, 198 refraction corrected images from Metrics Mode and 50 refraction uncorrected images
from Imaging Mode) and testing (20%, 214 refraction corrected images from Metrics Mode and
56 refraction uncorrected images from Imaging Mode). Informed consent was obtained from
patients for this study. This study was conducted in accordance with the Declaration of Helsinki
and was approved by the Institutional Review Board of Shanxi Medical University on Mar 11,
2019 under the protocol No. 2019LL130.

Our model outputs five segmentation masks including the cornea, iris, lens, ICL and IOL,
and two landmark detection targets including SS and IR. For validation, the iris, lens, cornea,
IOL and ICL were first manually annotated using Amira software (Thermo Fisher Scientific) by
two AS-OCT image analysts with a mean experience of 1.2±0.1 years. Meanwhile, SS and IR
were marked using an open source software LabelMe [41] (MIT, Cambridge, MA). The final
annotation was determined based on the consensus of the two analysts, and conflicts were resolved
by consulting a senior ophthalmologist (X. W.) with more than 10 years of experience. Before
resolving conflicting opinions, we found the Dice coefficients [42] between the two analysts to be
0.968±0.004, 0.994±0.002, 0.988±0.005, 0.980±0.005 and 0.993±0.005 for iris, lens, cornea,
ICL and IOL respectively. Meanwhile, for landmark detection, the precision, recall, F1-score and
mean Euclidean distances between the two analysts were 0.9459, 0.8235, 0.8805 and 31.09±18.94
µm for SS, and 0.9618, 0.9692, 0.9655 and 34.74±20.69 µm for IR, respectively.

3.2. Implementation details

All deep learning models were implemented in PyTorch [43], using two GeForce RTX 3090
GPUs. Our proposed multitask network was trained using the Adam optimizer, where the weight
decay was set to 0.001. The learning rate was set to 0.0001 at first and gradually reduced. The
best network parameters were selected based on the loss on the validation data. The minibatch
size for training was set to 8 and the size of input images was 3×512×512. The maximum number
of epochs was set to 150 and we used the “Early Stopping” strategy [44], where the training
process was stopped when the loss on the validation dataset did not improve for 30 consecutive
epochs.

3.3. Performance evaluation

The performance of segmentation was evaluated using Dice coefficient [42]. Because landmarks
may not be visible in some AS-OCT images [13], we first used the classification metrics to
evaluate whether a landmark was detectable in an image, including precision, recall, and F1-score:

Precision =
TP

TP + FP
. Recall =

TP
TP + FN

. (10)

F1-score =
2 × Precision × Recall

Precision + Recall
. (11)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and
false negatives, respectively. We define a predicted landmark as TP if the distance between
the detected landmark fell within 80 µm along both X and Y axis with the ground truth [45].
Then, we evaluated the position deviation using the mean Euclidean distance (MED) between
the predicted TP and ground truth landmarks. Our proposed method was compared with other
widely used SOTA models, including U-Net [37], TransUNet [38], AttnUNet [39] and WRB-Net



Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 3977

[15] for segmentation, and with Hourglass [46], HigherHRNet [47], RSN [48], the winner of
AGE [29] and Yang’s method [31] for landmark detection.

To evaluate the accuracy of the quantification of clinical parameters, Bland-Altman analysis
was applied to compare automatic with manual measurements.

3.4. Clinical application of the proposed method: a case study

To demonstrate the clinical value, we applied our method to analyze the anterior segment of
a patient under cataract surgery. The chosen patient was a 51 years old female with cataract
in her right eye. The patient received cataract surgery, during which phacoemulsification was
performed to emulsify and aspirate the cataract by an ultrasonic handpiece, and then IOL was
implanted. AS-OCT images from Metrics and Imaging mode of Heidelberg ANTERION were
taken before surgery and one day after surgery, respectively. Images were analyzed using the
method proposed in this study, and quantitative clinical parameters were compared between pre-
and post-surgery.

4. Results

4.1. Anterior segment segmentation and landmark detection

Table 2 shows the comparison of our proposed method with other SOTA deep learning methods,
as well as ablation studies to prove the design behind the chosen model. Our proposed method
performed better in the segmentation of iris, cornea, ICL and IOL and achieved the best overall
mean Dice coefficient for all tasks compared with other methods. Adding the feature exchange
module and the attention module, and including the two decoder branches for multitask learning
achieved higher Dice coefficient compared with models without such designs. Finally, our method
achieved Dice coefficients of 0.9655±0.0177, 0.9915±0.0176, 0.9878±0.0071, 0.9791±0.0101
and 0.9821±0.0304 for segmentation of iris, lens, cornea, ICL and IOL respectively, and the
mean Dice coefficient is 0.9812±0.0089. In this study, the segmentation targets are relatively
large with clear boundaries and high contrast compared to the background. Therefore, the
improvement through multitask learning obtained from the landmark detection task may not
seem so remarkable compared to the large area of the structures. However, such delicate details
are necessary for the segmentation of IOL which can be affected by the posterior lens capsule
and the anterior vitreous hyaloid.

Table 2. Evaluation of automated segmentation against ground truth.

Method
Dice coefficient

Iris Lens Cornea ICL IOL Mean

U-Net 0.9633±0.0213 0.9915±0.0174 0.9869±0.0075 0.9785±0.0107 0.8763±0.2339 0.9593±0.0426

TransUNet 0.9576±0.0277 0.9921±0.0155 0.9870±0.0065 0.9587±0.0191 0.9585±0.0937 0.9708±0.0154

AttnUNet 0.9590±0.0374 0.9894±0.0208 0.9840±0.0108 0.9667±0.0361 0.9755±0.0703 0.9749±0.0110

WRB-Net 0.9539±0.0185 0.9914±0.0093 0.9820±0.0070 0.9357±0.0221 0.9789±0.0065 0.9684±0.0127

Proposed 0.9655±0.0177 0.9915±0.0176 0.9878±0.0071 0.9791±0.0101 0.9821±0.0304 0.9812±0.0089
Ablationa 0.9648±0.0202 0.9912±0.0132 0.9830±0.0064 0.9742±0.0071 0.9475±0.1710 0.9724±0.0151

Ablationb 0.9627±0.0267 0.9907±0.0191 0.9867±0.0084 0.9717±0.0129 0.9019±0.1748 0.9627±0.0320

Ablationc 0.9592±0.0388 0.9910±0.0170 0.9860±0.0079 0.9777±0.0102 0.9699±0.0424 0.9768±0.0233

aNo feature exchange,
bOne decoder branch,
cNo attention module

Figure 7 shows typical segmentation examples of our proposed method compared with U-Net,
AttnUNet, TransUNet and WRB-Net. The first three methods missed some parts of the iris, and
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WRB-Net missed the upper corner of the lens. The above methods missed a small region in the
middle of ICL, which was affected by the strong reflection in AS-OCT images. WRB-Net further
missed a region of ICL near the iris. U-Net performed relatively poorly on IOL segmentation.
For a more complex case such as shown in Fig. 7(d), the four methods performed relatively poorly
on the segmentation of the posterior IOL surface. In comparison, our method can accurately
capture the contextual information of different structures and is robust to artifacts and variations
of image intensity.

Fig. 7. Visual comparisons of different methods for anterior segment segmentation. (a)
AS-OCT image without inserted optics. (b) AS-OCT image with ICL. (c-d) AS-OCT image
with IOL. (a2)-(d2) Full-scale AS-OCT images from which the cropped images (a1)-(d1)
are extracted (indicated by the white rectangles). (a3)-(d3) Segmentation results of (a2)-(d2)
by our proposed method. Iris: purple, lens: green, cornea: yellow, IOL: blue and ICL: red.

Table 3 and Table 4 show comparison results of the SS and IR landmark detection task. It can
be observed that our proposed method achieved the best performance for all metrics compared
with other SOTA methods for SS, with a precision, recall, F1-score, and MED of 0.9462, 0.7961,
0.8647, 41.77±23.13 µm, respectively. For IR, our proposed method achieved the best recall,
F1-score, and MED of 0.9142, 0.9433, 37.67±23.02 µm, respectively. Since IR was slightly
easier to detect, the performance of IR detection was better than that of SS. Some visual examples
of landmark detection are illustrated in Fig.8. It can be seen that our proposed method was more
robust in detecting the presence of SS and performed better on complex cases such as that in
Fig. 8(d) where anterior chamber angle is very small, due to the fact that the knowledge learned
by the segmentation task helped the detection branch to locate SS and IR.

Segmentation and landmark detection results of images where corneoscleral-iris angle is fully
or partially blocked by the eyelid are shown in Fig. 9. As demonstrated in Fig. 9(a)-(b), even
when certain portions of the cornea and iris are blocked by the eyelid, our method can clearly
delineate the visible sections and is robust to such disturbance. Meanwhile, our method can
still detect the iris root and scleral spur when they are close to the shadow caused by the eyelid.
For the completely blocked corneoscleral-iris angle (Fig. 9(c)), our method can appropriately
disregard such regions.

4.2. Refraction correction evaluation

Due to rapid eye movement, there can be significant changes of the anterior segment between the
two acquisitions under the “Imaging” and “Metrics” modes of Heidelberg ANTERION, making
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Fig. 8. Visual comparisons of different methods for landmark detection of SS (green dot)
and IR (red dot). (a-d) Examples of four ACA regions.

Table 3. Evaluation of SS detection against ground truth.

Method
Metrics

Precision Recall F1-score MED±STD (µm)

Hourglass 0.8350 0.5404 0.6562 59.21±22.73

HigherHRNet 0.8638 0.7184 0.7845 48.79±24.57

RSN 0.8556 0.7864 0.8196 44.41±23.22

The winner of AGE 0.8848 0.7702 0.8235 42.32±23.02

Yang’s method 0.8872 0.7637 0.8208 44.21±22.16

Proposed 0.9462 0.7961 0.8647 41.77±23.13
Ablationa 0.9011 0.7670 0.8287 44.88±23.51

Ablationb 0.7622 0.7573 0.7597 48.58±24.61

Ablationc 0.9060 0.7799 0.8383 43.22±23.98

aNo feature exchange,
bOne decoder branch,
cNo attention module

it almost impossible for direct comparisons on clinical AS-OCT images. Therefore, to evaluate
the accuracy of refraction correction, we used the AS-OCT system, Heidelberg ANTERION,
to image a bi-convex lens (LB1450-A-ML, Thorlabs, New Jersey, United States) with known
specifications (center thickness: 3.9 mm, diameter: 11.4 mm, refraction index at 1300 nm:
1.5037), as shown in Fig. 10(a1), and compared the ANTERION system corrected image of
the lens with the refraction corrected image using our proposed method, which are shown in
Fig. 10(a2) and Fig. 10(a3) respectively. To evaluate the corrective error, we define the axis of
the lens along which the distance between the anterior and posterior surfaces is the thickest,
and the center of the lens as the middle point between the anterior and posterior surfaces along
the axis. Next, we can align the refraction corrected lens from Heidelberg ANTERION and
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Table 4. Evaluation of IR detection against ground truth.

Method
Metrics

Precision Recall F1-score MED±STD (µm)

Hourglass 0.9696 0.6005 0.7417 56.19±21.41

HigherHRNet 0.9740 0.8123 0.8860 42.93±23.23

RSN 0.9709 0.8954 0.9317 40.55±22.27

The winner of AGE 0.9696 0.8552 0.9088 42.60±22.35

Yang’s method 0.9793 0.8981 0.9370 42.38±22.22

Proposed 0.9743 0.9142 0.9433 37.67±23.02
Ablationa 0.9732 0.8840 0.9260 39.54±22.82

Ablationb 0.9714 0.9115 0.9405 40.82±23.36

Ablationc 0.9738 0.8981 0.9344 38.96±23.22

aNo feature exchange,
bOne decoder branch,
cNo attention module

Fig. 9. Segmentation and landmark detection results of images with corneoscleral-iris angle
(partially) blocked by the eyelid. (a)-(c) Examples of three AS-OCT cross-sectional images.

that from our proposed method with reference to the center of the lens. For the anterior and
posterior surfaces, we calculated the absolute distance between our corrected boundary and the
ground truth boundary from Heidelberg ANTERION. The mean error of the corrected boundary
is 0.00465±0.0039 mm, which is below the resolution of the imaging system. We also illustrate
refraction correction on two uncorrected clinical AS-OCT images (Fig. 10(b1) and Fig. 10(c1))
and the corresponding corrected images are shown in Fig. 10(b2) and Fig. 10(c2), where the
real shapes of anterior segment structures were recovered. These qualitative and quantitative
evaluation verified the accuracy of our refraction correction method.

4.3. Evaluation of quantitative measurements of anterior segment

Bland-Altman analysis results for the representative clinical parameters computed automatically
vs. manually are shown in Fig. 11. The mean values of the difference are -0.0015 mm for
AOD500; 3 × 10−6 mm2 for TISA500; 0.0045 mm for I-Curve; -0.008 mm for pupil diameter.
The 1.96 SD intervals are 0.14 mm, 8 × 10−4 mm2, 0.097 mm, and 0.056 mm, respectively.
For ACD, ACW, ACV, smoothness index, iris thickness, lens decentration and lens tilt, the
mean values are 0.002 mm, 0.0006 mm, 0.019 mm3, 0.0022, 0.0013 mm, 0.004 mm, and 0.09◦,
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Fig. 10. Validation of refraction correction. (a1) The bi-convex lens used for comparison.
(a2) The refraction corrected image from Heidelberg ANTERION. (a3) The refraction
corrected image using our proposed method. (b1, c1) Two uncorrected AS-OCT images.
(b2, c2) Corrected AS-OCT images by our proposed method corresponding to (b1) and (c1).

Fig. 11. Bland-Altman analysis of representative clinical parameters between manual and
automatic measurements: (a) AOD500, (b) TISA500, (c) I-Curve, (d) Pupil diameter.

and the 1.96 SD intervals are 0.007 mm, 0.1 mm, 1.7 mm3, 0.02, 0.035 mm, 0.039 mm, and
0.48◦, respectively. These results indicate that there are very close agreements and minimal bias
between automatically and manually computed parameters.

4.4. Clinical case study

Examples of clinical measurements are shown in this section to demonstrate their applications in
different clinical scenarios including clinical diagnosis, pre-surgery planning and post-surgery
evaluation.

(1) Clinical diagnosis: Keratoconus may induce irregular astigmatism, myopia, and protrusion,
resulting in mild to severe impairment in the quality of vision. ACD and ACV are crucial for
diagnosing keratoconus [49], where in Table 5 the increase of the two post-surgery metrics is
mainly because the insertion location of IOL is further away from the cornea than the lens, as
shown in Fig. 1(b1) and (c1). AOD and TISA are sensitive in recognizing any narrow ACA for
diagnosing glaucoma [50], and can facilitate the decision of whether to perform a peripheral
iridotomy [51]. In Fig. 12(a) and (b), pre-surgery ACA measurements, AOD500 and TISA500, are
illustrated as blue dots, and fit by blue lines. Due to the limitations of AS-OCT, the SS at 300◦ in
pre-surgical AS-OCT images could not be detected, which is represented by the red dot as a result
of fitting. For the iris parameters, I-Curve indicates the convexity of the iris which is associated
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with the presence of PACG [52]. Smooth index quantifies the smoothness of iris surface which
could be helpful in unilateral Fuchs uveitis diagnosis [40]. By analyzing the thickness of the
iris, thick peripheral iris roll can be diagnosed and differentiated from plateau iris, which are
two major mechanisms of angle closure [53]. Besides being an indicator of glaucoma [54], iris
thickness is also related to anterior segment inflammation, where the thickening of the iris exists
in sympathetic ophthalmia, severe granulomatous uveitis, and masquerade syndromes [55], and
iris configuration such as SS-IR distance can help diagnose pigment dispersion syndrome [56].

Fig. 12. Quantitate measurements of ACA and iris before and after cataract surgery: (a)
AOD500, (b) TISA500, (c) I-Curve, and (d) Smooth index (Blue: pre-surgery; Orange:
post-surgery). (e1-e2) Pre-surgery iris thickness heatmap and thickness values over different
regions. (f1-f2) Post-surgery iris thickness heatmap and thickness values over different
regions.

Table 5. Comparison of clinical parameters between pre-
and post-surgery.

Pre-surgery Post-surgery

ACD 3386 µm 4420 µm

ACV 1.3×1011 µm3 1.7×1011 µm3

Tilt 2.79◦ -

Decentration 133 µm -

TiltIOL - 3.58◦

DecentrationIOL - 121 µm

(2) Pre-surgery planning: For cataract surgery, accurate measurement of ACD is important for
predicting the post-surgery effective lens position and the refractive outcome, which can assist in
choosing the appropriate IOL [57].

(3) Post-surgery evaluation: The tilt and decentration of IOL and lens can facilitate the
assessment of their position and the effects of the implanted IOL on visual functions such as
optical aberration, visual acuity, dysphotopsia and wavefront aberrations [7,58,59]. As shown
in Table 5, the IOL had a more significant tilt angle and a smaller decentration than the natural
lens. AOD and TISA are also essential in post-surgery evaluation to determine the effects of
the cataract surgery on ACA. In Fig. 12(a) and (b), the larger AOD500 and TISA500 indicates
that cataract extraction can be potentially beneficial to treat eyes with relatively high risks of
angle-closure [60]. Meanwhile, by evaluating the iris change, we can also evaluate whether
iris-related diseases occur as a result of the surgery. The I-Curve and smooth index, shown in
Fig. 12(c) and (d), indicate that the iris was less bent and smoother after surgery than it was
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before surgery. As shown in Fig. 12(e1) and (e2), despite similar thickness distribution, the iris
became thinner as a result of surgery and the smaller pupil radius during imaging, which was
further verified by the average thickness, shown in Fig. 12(f1) and (f2).

5. Discussion

In this study, we developed a multitask deep learning method to simultaneously segment the
main structures and detect the key points of the anterior segment in AS-OCT images. Based on
the results of our multitask network, we then performed refraction correction to recover the true
geometry of the anterior segment for subsequent quantitative analysis. Experiments verified the
performance of our proposed method on segmentation, landmark detection, and the accuracy
of refraction correction procedure. Finally, by applying the method to analyze a clinical case
of cataract surgery, we demonstrated that our proposed method can effectively facilitate the
evaluation of surgical outcomes.

There are several competing methods for the measurement of anterior segment structures.
One of the most commonly used methods is ultrasound biomicroscopy (UBM) which utilizes
ultrasound at 50-100 MHz for imaging. However, UBM makes direct contact with the eye
and demands extensive experience to acquire images. Gonioscopy is also commonly used
and is currently the gold standard for screening ACA. Similar to UBM, gonioscopy requires
direct contact with the eye and is manually performed, which is time-consuming and subjective.
Moreover, the improper pressure exerted on the contact lens during a gonioscopy exam may
distort the anterior segment, leading to an incorrect diagnosis. In addition, although Scheimpflug
imaging is non-contact, it has a low axial resolution for imaging the entire anterior segment. In
sharp contrast, AS-OCT provides a non-invasive and non-contact examination method with high
imaging speed, which is less affected by the experience of operators and can provide high-quality
cross-sectional and 3D images.

One contribution of our study is the proposal of a multitask network to explore the association
between various structures and key points of anterior segment. Compared to existing methods
taking segmentation and landmark detection as two seperate tasks [14,28,29], our proposed
multitask network in performing the two tasks simultaneously is effective by utilizing the mutual
correlation between various structures and key features to benefit both tasks, where the architecture
of our model is also an extensible paradigm for multitask learning. Experiments demonstrated
the accuracy of our proposed method and the benefit of feature sharing. Our method can also be
potentially applied to other AS-OCT systems with transfer learning [61], although further studies
are needed to demonstrate the application. Another important contribution of our research is
the incorporation of refraction correction, which helps to recover the true geometry of anterior
segment structures such as the iris. Previous methods [20,36] have limitations of either requiring
manual input or not considering the refraction at the interface between the posterior corneal
surface and aqueous humor. Our method can be applied to existing uncorrected images acquired
by commercial AS-OCT systems to make automatic corrections on the anterior and posterior
surfaces of the cornea to generate more accurate quantification results.

Automatic assessment of anterior segment clinical parameters has the potential to significantly
improve the efficacy of clinical workflow and provide standardized and objective assessment of
anterior segment in a wide range of clinical scenarios including surgery evaluation. In addition to
assisting the plan for IOL implanation mentioned in the case study, clinical parameters computed
from pre-surgery AS-OCT images can help choose a proper size of ICL [62], which is essential
for successful treatment of high myopia. As shown in Fig. 12, rather than computing a single iris
thickness number, we can generate the iris thickness heatmap of the whole iris for a comprehensive
and detailed analysis of location-specific changes. Furthermore, several anterior segment metrics,
including AOD, TISA, I-Curve and etc., can be computed and compared from AS-OCT images
acquired under different illumination intensities to evaluate the optimal examination condition
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[63]. Therefore, the capability of our proposed method to automatically segment and detect all
the essential structures of the anterior segment is highly relevant to meet the clinical demands.

There are several limitations in our study. First, we did not correct the refraction at the anterior
lens surface considering that the refractive index varies significantly among individuals [64],
and the Heidelberg ANTERION does not provide any reference value for the refractive index
of the lens either. Additionally, personal conditions such as diabetes [65] and cataract [66] can
also cause significant changes of the refractive index of the lens. It is important to note that the
curvature of the imaged anterior lens surface is significantly smaller than that of the corneal
surface, making the distortion less serious. Another limitation is that our method is under the
supervised learning paradigm, where manual labeling of numerous images is required. Since the
anterior segment is relatively regular, semi-supervised learning may be beneficial in future work.

6. Conclusion

In summary, we proposed a multitask deep learning method for simultaneous segmentation and
landmark detection in AS-OCT images, and a refraction correction method which can be applied
to commercial AS-OCT images to restore the true geometry of anterior segment. Experiments
verified the performance of the proposed multitask network and refraction correction method.
Clinical application of our approach to a patient undergoing cataract surgery demonstrated
that our method was capable of assessing the key parameters to predict potential post-surgery
complications.
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